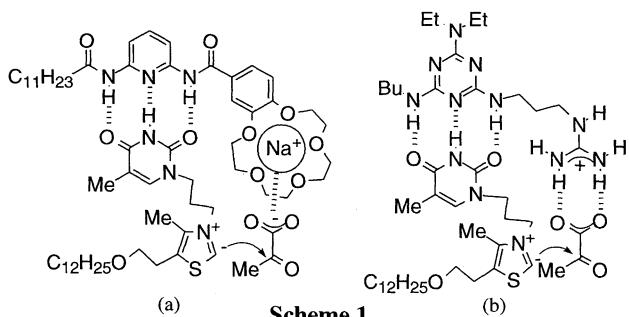


Bifunctional Receptors. Rate Accelerations of Oxidative Decarboxylation of Pyruvate by Thymine-Thiazolium in the Presence of a Melamine Derivative Bearing a Guanidinium Ion

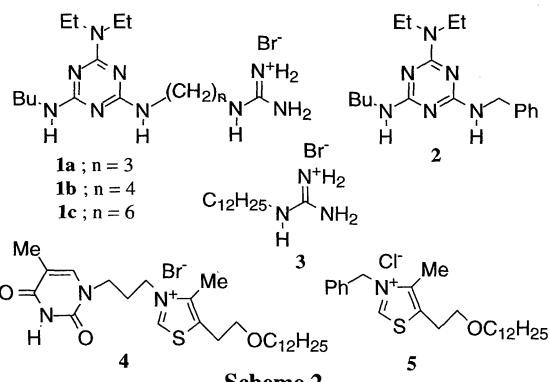
Akiko Takaki, Katsuhiro Utsumi, Takeshi Kajiki, Tadashi Kuroi, Tatsuya Nabeshima,[†] and Yumihiko Yano^{*}


Department of Chemistry, Faculty of Engineering, Gunma University, Kiryu, Gunma 376

[†]Department of Chemistry, University of Tsukuba, Ibaraki 305

(Received September 24, 1996)

It was found that melamine derivatives bearing a guanidinium ion assemble a thymine-thiazolium ion and pyruvate in close proximity via hydrogen bonds to enhance the rate of the oxidative decarboxylation in $\text{CHCl}_3\text{-MeCN}$ (9 : 1 v/v), where the guanidinium ion not only binds pyruvate but also activates it.

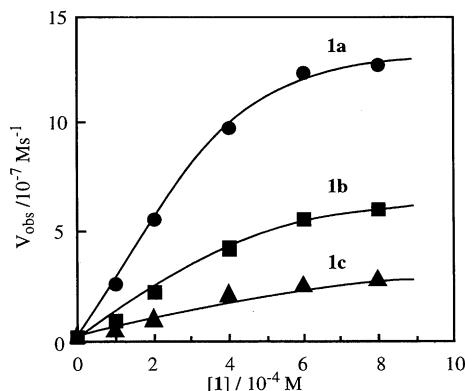

Introduction of apoenzyme functions into catalytic systems is inevitable for construction of artificial enzymes. A number of studies on catalytic systems possessing a substrate-binding site have been reported as enzyme models.¹ For thiamine model systems, a cyclodextrin,² a cyclophane,³ a macrotricyclic quaternary ammonium ion,⁴ and a crown ether⁵ have been used as a substrate-binding site. The thiazolium ion, however, is covalently connected to these functional groups. We have reported that 2,6-amidopyridine derivative having a benzocrown ether assembles a thymine-thiazolium ion **4** via hydrogen bonds and pyruvate by electrostatic interaction of Na^+ bound into the crown cavity as shown in Scheme 1(a), giving the rate acceleration of the oxidative decarboxylation in $\text{CHCl}_3\text{-MeCN}$ (9 : 1 v/v).⁶ This system, however, does not possess the substrate-activating and/or transition state-stabilizing functions. Much larger rate accelerations would be achieved if such functions are introduced into the receptor molecule. Meanwhile, association of carboxylate and a guanidinium ion by hydrogen bonding is

Scheme 1.

well established,⁷ and furthermore hydrogen-bonded phenylglyoxylate by an amidinium ion is known to be reduced by an NADH model in MeCN, whereas not for ethyl phenylglyoxylate.⁸ This suggests that a guanidinium ion could be used as a pyruvate-binding and -activating moiety. This prompted us to examine rate enhancements due to a noncovalently assembled system bringing with pyruvate activation by the guanidinium ion as shown in Scheme 1(b). The receptors and thiazolium ions employed are shown in Scheme 2.⁹ The reactivities of the thiazolium ions were kinetically estimated by employing flavin oxidation of the active aldehyde in $\text{CHCl}_3\text{-MeCN}$ (9 : 1 v/v) containing 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) under anaerobic conditions as described previously.^{5,6}

In the first place, the effects of the melamine derivative **2** and guanidinium ion itself **3** on the rates for **4**⁶ were examined. As

Scheme 2.


shown in Figure 1, the rate (V_{obs}) increases with the increase of **[3]** to reach a saturation, whereas the rate is not affected by addition of **2**. It was confirmed that the rate acceleration is not observed by addition of cetyltrimethylammonium bromide. It was also confirmed that such a rate acceleration by **3** is not observed in EtOH. These results clearly indicate that pyruvate is activated by the guanidinium ion via hydrogen bonds accompanying charge neutralization. The observed rate (V_{obs}) is a summation of the rate for free pyruvate and that for hydrogen-bonded pyruvate (**3**•pyruvate) in an allotment proportional to the each concentration. To evaluate the concentrations of the each pyruvate, the binding constant of **3**•pyruvate (K_1) was determined to be 3700 M^{-1} ($1 \text{ M} = 1 \text{ mol dm}^{-3}$) in CDCl_3 in ^1H NMR titration.¹⁰ This allows us to estimate the amount of **3**•pyruvate to be less than 51% of the total amount of pyruvate under the reaction conditions.¹¹ Namely the observed rate could be written as $V_{\text{obs}} = 0.49 V_0 + 0.51 V_p$, where V_0 and V_p are the rate without **3** and that from **3**•pyruvate, respectively. Since V_0 and V_{obs} are $1.40 \times 10^{-8} \text{ Ms}^{-1}$ and $1.29 \times 10^{-7} \text{ Ms}^{-1}$, V_p is calculated to be $2.39 \times 10^{-7} \text{ Ms}^{-1}$. Thus, the rate acceleration due to the guanidinium ion **3** is more than 17-fold (V_p/V_0), indicating that the guanidinium ion itself binds and activates pyruvate in the present reaction.

The effect of **1**, which are able to assemble both **4** and pyruvate via hydrogen bonds, was examined similarly. As shown in Figure 2, the rates increase with the increase of **[1]** and the rate accelerations are dependent on the length of the methylene spacer in **1**. At $[\mathbf{1}] = 8.0 \times 10^{-4} \text{ M}$, the apparent rate accelerations are 90-fold for **1a**, 50-fold for **1b**, and 20-fold for **1c**, respectively, indicating that the geometrical positioning of the thiazolium ion and pyruvate in the complex is important for the rate accelerations. In the presence of **1**, coexisting species in the solvent are free **4**, **1**•**4**, free pyruvate, **1**•pyruvate, and **1**•**4**•pyruvate. If it is assumed that the reactivities of free **4** and **1**•**4** are similar and pyruvate activation by the guanidinium moiety of **1** is similar to that by **3**, the rate accelerations due to the ternary complex formation would be estimated as described for

Figure 1. The concentration effect of **2** or **3** on the rates.
 $[4] = 2.00 \times 10^{-4}$ M, $[\text{MeCOCO}_2\text{H}] = 1.00 \times 10^{-3}$ M, $[\text{DBU}] = 2.00 \times 10^{-3}$ M, $[\text{Flavin}] = 2.00 \times 10^{-5}$ M, $\text{CHCl}_3 : \text{MeCN} = 9 : 1$ (v/v), N_2 , 25 °C.

3•pyruvate; V_{obs} would be simply represented as a summation of V_0 , V_p , and V_c (the rate from **1**•**4**•pyruvate as shown in Scheme 1(b)) in an allotment proportional to the each concentration. Since the binding constant for **1**•**4** was unable to be determined owing to broadening of N-H protons, the binding constant between **2** and 1-(3-bromopropyl)thymine (43 M^{-1} in CDCl_3) was used as that for **1**•**4** (K_2),¹² giving the complex formation to be 3% of the total amount of **4** under the reaction conditions. The ratio of V_0 , V_p , and V_c in V_{obs} is evaluated to be 0.490 : 0.495 : 0.015 by using K_1 and K_2 : $V_{\text{obs}} = 0.490 V_0 + 0.495 V_p + 0.015 V_c$. V_c is calculated to be $7.6 \times 10^{-5} \text{ Ms}^{-1}$ by using $V_{\text{obs}} = 1.27 \times 10^{-7} \text{ Ms}^{-1}$, V_0 and V_p obtained for **3**. The rate acceleration due to formation of **1**•**4**•pyruvate is 5×10^3 -fold (V_c/V_0) for **1a**.¹³ Similarly the rate accelerations due to **1b** and **1c** are evaluated to be 3×10^3 -fold and 1×10^3 -fold,

Figure 2. The concentration effect of **1** on the rates.
 $[4] = 2.00 \times 10^{-4}$ M, $[\text{MeCOCO}_2\text{H}] = 1.00 \times 10^{-3}$ M, $[\text{DBU}] = 2.00 \times 10^{-3}$ M, $[\text{Flavin}] = 2.00 \times 10^{-5}$ M, $\text{CHCl}_3 : \text{MeCN} = 9 : 1$ (v/v), N_2 , 25 °C.

respectively. In the case of **5**, however, such a rate acceleration except for pyruvate activation was not observed.

Although template is a well-known concept,¹⁴ functionalized receptors possessing both binding and activating abilities are scarcely reported in spite of a key building block for construction of artificial enzymes.

In summary, we demonstrated that (i) a guanidinium ion binds and activates pyruvate by hydrogen bonding, and (ii) the melamine derivatives bearing a guanidinium ion binds both the thymine-thiazolium ion and pyruvate in close proximity to bring about large rate accelerations. Such molecules could be regarded to display a function of apoproteins.

This work was supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan, and also the support of Fuji Photo Film Co., Ltd.

References and Notes

- 1 R. Breslow, *Acc. Chem. Res.*, **28**, 146 (1995); Y. Murakami, J. Kikuchi, Y. Hisaeda, and O. Hayashida, *Chem. Rev.*, **96**, 721 (1996).
- 2 F. Diederich and H-D. Lutter, *J. Am. Chem. Soc.*, **111**, 8438 (1989); P. Mattei and F. Diederich, *Angew. Chem., Int. Ed. Engl.*, **35**, 1341 (1996).
- 3 D. Hilvert and R. Breslow, *Bioorg. Chem.*, **12**, 206 (1984); R. Breslow and E. Kool, *Tetrahedron Lett.*, **29**, 1635 (1988).
- 4 N. Bergmann and F. P. Schmidtchen, *Tetrahedron Lett.*, **29**, 6235 (1988).
- 5 3,10-Dimethylisoalloxazine was employed. Y. Yano, K. Kimura, K. Shimaoka, and H. Iwasaki, *J. Chem. Soc., Chem. Commun.*, **1986**, 160; A. Takaki, M. Takano, S. Ohshima, T. Nabeshima, and Y. Yano, *Chem. Lett.*, **1994**, 1417.
- 6 S. Ohshima, N. Tamura, T. Nabeshima, and Y. Yano, *J. Chem. Soc., Chem. Commun.*, **1993**, 712.
- 7 A. Galan, D. Andrew, A. M. Echavanan, P. Prados, and J. de Mendoza, *J. Am. Chem. Soc.*, **114**, 1511 (1992); P. Schiesel and F. P. Schmidtchen, *Tetrahedron Lett.*, **34**, 2449 (1993).
- 8 J. Krechl and S. Smerckova, *Tetrahedron Lett.*, **30**, 5315 (1988).
- 9 The receptors (**1**) were prepared according to essentially same procedures as described in our previous study; S. Ohshima, N. Tamura, T. Nabeshima, and Y. Yano, *J. Chem. Soc., Chem. Commun.*, **1993**, 712 (1993). **1a**: mp 141–142 °C (CHCl_3 -diethyl ether). Found C, 41.2; H, 7.51; N, 29.1%. Calcd for $\text{C}_{15}\text{H}_{32}\text{BrN}_9 \cdot \text{H}_2\text{O}$: C, 41.28; H, 7.85; N, 28.89%. **1b**: mp 138–141 °C (CHCl_3 -diethyl ether). Found C, 43.8; H, 7.72; N, 28.4%. Calcd for $\text{C}_{16}\text{H}_{34}\text{BrN}_9 \cdot 0.5\text{H}_2\text{O}$: C, 43.53; H, 7.99; N, 28.55%. **1c**: pasty solid. Found C, 43.4, H, 8.28, N, 25.5%. Calcd for $\text{C}_{18}\text{H}_{38}\text{BrN}_9 \cdot 2\text{H}_2\text{O}$: C, 43.54; H, 8.53; N, 25.39%.
- 10 The binding constant of **3**•pyruvate (K_1) was determined by recording the chemical shifts of N-H proton of **3** by titration with pyruvic acid and triethylamine in CDCl_3 .
- 11 [Pyruvate] = 1.00×10^{-3} M, **3** = 8.00×10^{-4} M. K_1 in CHCl_3 -MeCN (9 : 1 v/v) is considered to be smaller than that in CDCl_3 . This means that the amount of **3**•pyruvate in CHCl_3 -MeCN is less than 51%. Less complex formation results in a larger rate acceleration.
- 12 The binding constant (K_2) was determined by following the chemical shifts of the thymine N-H by titration with **2** in CDCl_3 . The binding constants in CDCl_3 - CD_3CN (9:1 v/v) could not be obtained due to broadening of N-H protons.
- 13 Since K_1 and K_2 in the present solvent system are expected to be smaller than those in CDCl_3 , real rate enhancements should be larger than this value.
- 14 R. Hoss and F. Vogtle, *Angew. Chem., Int. Ed. Engl.*, **13**, 375 (1994).